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EXECUTIVE SUMMARY 

Lithium-ion (Li-ion) battery technology has played a critical role in supporting wide-scale 

adoption of hybrid and electric vehicles (HEVs/EVs). Real-time health diagnostics/prognostics 

and predictive maintenance/control of Li-ion batteries are essential for reliable and safe battery 

operation. Over the past two decades, a number of machine learning techniques have been 

developed to estimate the state of health (SOH) of a battery cell based on readily available 

measurements from the cell (i.e., voltage, current, and temperature). However, most of these 

existing techniques required manual feature extraction that relied heavily on engineering skills 

and domain expertise, and may risk dropping useful information in the raw data that would 

otherwise help improve the diagnostic performance. Additionally, existing data-driven and 

model-based prognostics approaches are primarily application-specific and thus are not easily 

generalized for prognostics of Li-ion batteries used in different applications. 

This project intended to create an intelligent prognostics platform for Li-ion batteries, which 

would equip existing battery management systems (BMSs) with the capability to perform 

predictive maintenance/control for failure prevention. The platform developed in this project 

consisted of two modules:  

 Deep feature learning, which automatically learns features of (capacity) fade from large 

volumes of voltage and current measurement data during partial charge cycles and estimates 

the real-time SOH of a battery cell in operation  

 Ensemble prognostics, which leverage the current and past SOH estimates in Module 1 to 

achieve robust prediction of the cell’s remaining useful life (RUL)  

Robust prediction of RUL is achieved by ensemble learning-based prognostics, which 

synthesizes the generalization strengths of multiple prognostic algorithms to ensure high 

prediction accuracy for an expanded range of battery applications and their operating conditions. 

The two modules aimed to learn features of fade from partial charge data, assess real-time health 

of individual battery cells, and predict when and how the cells are likely to fail. A case study 

involving implantable-grade Li-ion cells was conducted to demonstrate a deep learning approach 

to online capacity estimation, developed for Module 1. 
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INTRODUCTION 

Lithium-ion (Li-ion) battery technology has been playing a critical role in supporting wide-scale 

adoption of hybrid and electric vehicles (HEVs/EVs). Safety and reliability of the Li-ion 

batteries in these transportation applications have been receiving a considerable amount of 

attention from both industry and academia. Over the past two decades, real-time health 

diagnostic/prognostic techniques have been developed to monitor the state of health (SOH) and 

predict the remaining useful lives (RULs) of individual battery cells (Plett 2004, Lu et al. 2013). 

These techniques are often deployed in battery management system (BMS) to perform the 

following two on-board tasks: 

 Health diagnostics: The purpose of this task is to estimate the capacity of a battery cell based 

on readily available measurements (i.e., voltage [V], current [I], and temperature [T]) from 

the cell. Here, the cell’s capacity is the total amount of charge stored in the cell when the cell 

is fully charged. It is an important indicator of the cell SOH. 

 Health prognostics: The purpose here is to predict the remaining service time or number of 

charge-discharge cycles before the cell capacity fades to an end of life limit. The remaining 

time or number of charges is also termed the RUL.  

The remainder of this section first reviews the state of knowledge on battery health 

diagnostics/prognostics and then provides an overview of the proposed intelligent prognostics 

platform. 

Review on Battery Health Diagnostics 

Two major parameters characterizing the SOH of a Li-ion battery cell are the capacity and 

internal resistance of the cell (Lu et al. 2013). When the capacity of a cell is used to indicate its 

SOH, the cell SOH is often defined as the ratio of the cell capacity at the current charge-

discharge cycle to the rated capacity given by the cell manufacturer. Accurate capacity 

estimation allows a battery cell to be replaced right before the cell capacity fades to an end of life 

limit, thus allowing cell useful life to be fully exploited while preventing imminent cell failures.  

Recent literature has reported a large number of approaches to estimating the capacity of a Li-ion 

battery cell. These approaches can be broadly categorized into (1) adaptive filtering approaches 

(Plett 2004, Plett 2006, Lee et al. 2008, Schmidt et al. 2010, Hu et al. 2012a, Xiong et al. 2014, 

Chen et al. 2018), (2) coulomb counting approaches (Ng et al. 2009, Waag and Sauer, 2013), and 

(3) machine learning-based approaches (Eddahech et al. 2012, Kim et al. 2012, Nuhic et al. 

2013, Bai et al. 2014, Hu et al. 2015, Liu et al. 2018). Of particular interest here are the machine 

learning-based approaches that perform online capacity estimation by learning the complex 

dependency of the capacity of a cell on the characteristic features extracted from the V and I 

measurement data from the cell. For example, Hu et al. (2015) first defined several characteristic 

features, indicative of the cell capacity, based on the partial charge curves and then employed the 

relevance vector machine, a kernel regression model, to determine the relationship between the 
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capacity of a battery cell and its charge-related features. The regression model, after being 

trained offline, was used online to infer the unknown capacity of a battery cell from the 

predefined set of charge-related features (Hu et al. 2015). This category of capacity estimation 

approaches has gained popularity in recent years, largely due to the increased capability to 

collect large volumes of measurement data and leverage the data to train complex machine 

learning models.  

Although the existing machine learning-based approaches can provide the satisfactory accuracy 

in capacity estimation, they require manually extracting (or defining) a certain number of 

features from the voltage and current measurements. It may be difficult to manually identify the 

characteristic features that carry the most useful information for estimating the cell capacity. In 

addition, extracting a limited number of features may risk the loss of critical information in the 

raw data that would otherwise help improve the diagnostic performance. Therefore, it becomes 

essential to automate the feature extraction process, thus allowing for learning the informative 

features from the raw data 

Review on Battery Health Prognostics 

Health prognostics is the process of predicting the RUL of an engineered system. RUL refers to 

the available service time left before the performance of the system degrades to an unacceptable 

level. Research on health prognostics of a general engineered system has been conducted with an 

emphasis on modeling the RUL distribution. In general, three categories of approaches have 

been developed that enable continuous updating of system health degradation and RUL 

distribution: (1) model-based approaches (Gebraeel et al. 2005, Luo et al. 2008, Gebraeel and 

Pan 2008, Wang et al. 2014), (2) data-driven approaches (Wang et al. 2008, Heimes 2008, Coble 

and Hines 2008, Zio and Di Maio 2010, Hu et al. 2012b), and (3) hybrid approaches (Goebel et 

al. 2006, Saha et al. 2009, Hu et al. 2012b, Liao and Köttig 2014, Liao and Köttig 2016). Model-

based prognostics refers to the methods that use models derived from first principles or 

probability theory. The prediction accuracy of model-based approaches depends on the prior 

knowledge of physical behavior (Liao and Köttig 2014). However, the domain knowledge for 

complex systems is not always available or may be too expensive to acquire. To complement 

model-based approaches, data-driven approaches refer to the approaches that use models learned 

exclusively from data. Typical data-driven methods use interpolation (Wang et al. 2008, Zio and 

Di Maio 2010), extrapolation (Coble and Hines 2008), and machine learning (Heimes 2008) for 

RUL prediction. In data-driven approaches, training data are used to design and train a predictive 

model; testing data are used to validate the predictive model. Data-driven approaches are 

typically more effective than model-based approaches for complex engineered systems. Hybrid 

prognostics refers to the approaches that facilitate the combined use of model-based and data-

driven approaches.  

Battery prognostics enable an on-board BMS to predict the remaining service time or number of 

charge-discharge cycles before the capacity of a battery cell managed by the BMS fades below 

an end of life limit. Research on battery health prognostics has been conducted mainly by 

researchers in the Prognostics and Health Management (PHM) Society. Note that the approaches 

mentioned earlier, although not developed specifically for Li-ion battery prognostics, can 
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generally be adapted for RUL assessment of Li-ion batteries. One of the earliest studies on Li-ion 

battery prognostics proposed a Bayesian framework with a particle filter for RUL prediction of 

individual battery cells based on impedance measurement (Saha et al. 2009). To eliminate the 

need for impedance measurement equipment, researchers developed various model-based 

approaches that predicted RUL by extrapolating a capacity fade model (Saha and Goebel 2009, 

Liu et al. 2010, He et al. 2011, Miao et al. 2013, Wang et al. 2013, Ng et al. 2014, Wang et al. 

2016, Hu et al. 2018).  

Existing data-driven and model-based prognostic approaches are mostly application-specific, and 

thus cannot be readily generalized for prognostics of Li-ion batteries used in different 

applications. Hybrid prognostics show great potential for achieving better prediction accuracy 

and robustness than model-based and data-driven prognostics. Ensemble learning-based 

prognostics (or ensemble prognostics) are among the most popular hybrid approaches, and have 

been shown to be capable of improving prediction accuracy by combining multiple learning 

algorithms (Hu et al. 2012b). To fully harness the benefits offered by ensemble learning, the 

following issue needs to be addressed: How can the effects of time-dependent degradation be 

taken into account when predicting the RUL of an engineered system? This presents a unique 

opportunity to develop a new ensemble learning-based approach for prognostics of Li-ion 

batteries as well as general engineered systems.  

Overview of Intelligent Prognostics Platform 

This project was intended to create an intelligent prognostics platform for Li-ion batteries, which 

would equip existing battery management systems (BMSs) with the capability to perform 

predictive maintenance/control for failure prevention. As shown in Figure 1, the platform 

developed in this project consisted of two modules: 

 Deep feature learning, which automatically learns features of (capacity) fade from large 

volumes of voltage and current measurement data during partial charge cycles and estimates 

the real-time SOH of a battery cell in operation  

 Ensemble prognostics, which leverage the current and past SOH estimates in Module 1 to 

achieve robust prediction of the cell’s remaining useful life (RUL)  
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Figure 1. Intelligent prognostics platform for predictive maintenance/control of Li-ion 

batteries 

Robust prediction of RUL is achieved by ensemble learning-based prognostics, which synthesize 

the generalization strengths of multiple prognostic algorithms to ensure high prediction accuracy 

for an expanded range of battery applications and their operating conditions. The two modules 

aim to learn features of fade from partial charge data, assess real-time health of individual battery 

cells, and predict when and how the cells are likely to fail. A case study involving implantable-

grade Li-ion cells was conducted to demonstrate a new deep learning approach to online capacity 

estimation, developed for Module 1. 
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MODULE 1: DEEP FEATURE LEARNING 

As discussed in the previous section, there has been a considerable amount of research conducted 

to develop machine learning-based approaches to online capacity estimation; however, most of 

these existing approaches require manual feature extraction, where human engineers manually 

identify the informative features from the measurement data. There is a critical need to develop a 

generic learning approach to automate the feature extraction process. This section presents the 

use of a deep learning model, namely deep convolutional neural networks (DCNNs), in Module 

1 to assess the capacity of a battery cell online, based on the voltage and current measurements 

during a partial charge cycle. 

Input and Output Structures 

The objective of this study was to estimate the capacity of a Li-ion cell based on the input curves 

(i.e., voltage, current, and capacity curves) of the cell during a partial charge cycle. It should be 

noted that the voltage and current can be directly measured from the cell, while the capacity 

curve needs to be calculated using the coulomb counting method, which integrates the charge 

current over time for the partial charge cycle. An illustration of the three input curves of a cell 

for one charge cycle is shown in Figure 2.  

 
Shen et al. 2018. Copyright © 2018 ASME. All rights reserved. Reprinted with permission. 

Figure 2. Voltage, current, and capacity curves of a battery cell for one charge cycle 

Each curve is discretized into 25 segments (corresponding to 25 equal time steps) and the 

discretized values of voltage, current, and capacity are considered as the input variables to be fed 
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into the DCNNs model. As such, the input to the model is a 25×3 matrix, of which the first, 

second, and third columns correspond to the discretized values of voltage, current, and capacity, 

respectively. The matrix can be expressed as:  

11 1

25 25 25 25 3

ˆˆ ˆ

ˆˆ ˆInput

ˆ ˆ ˆ

i i i

CV I

V I C

V I C


 
 
 
 
 
 
 
  

 (1) 

where �̂�𝑖, 𝐼𝑖, and �̂�𝑖 are the discretized values of voltage, current, and capacity for the ith segment, 

measured at the ith time step (Δ𝑡𝑖) of a partial charge cycle. Each partial charge cycle is 

associated with a measured discharge capacity which is a scalar number and serves as the true 

output of the DCNNs model. The discharge capacity is calculated using the coulomb counting 

method, which integrates the discharge current over time for the entire full discharge cycle that 

immediately follows the partial charge cycle.  

Overall Architecture of DCNNs 

This study investigated the use of a deep architecture, DCNNs, to online assess the capacity of a 

battery cell by solving this high-dimensional mapping problem (i.e., R75 → R1). The DCNNs are 

mainly composed of two types of layers: convolutional layers (Conv.) and fully-connected layers 

(FC.). Convolutional layers are used to execute a special kind of linear operation named 

convolution. In the context of deep learning, convolution is an operation on the inputs and 

kernels. Specifically, each unit of a convolutional layer is connected to local patches in the 

feature maps of the previous layer through a set of weights called filter banks. The result of this 

locally weighted sum is then passed through a variety of layers, such as a rectified linear units 

(ReLU) (Nair and Hinton 2010) and batch normalization (BN) (Ioffe and Szegedy 2015), to form 

the feature maps of the next layer. Fully-connected layers use matrix multiplication by a matrix 

of parameters with a separate parameter describing the pair-wise interactions between all the 

input and output units.  

The overall architecture of DCNNs, as depicted in Figure 3, is composed of eight building 

blocks, the first five being convolution stages and the remaining three being fully-connected 

stages.  
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Shen et al. 2018. Copyright © 2018 ASME. All rights reserved. Reprinted with permission. 

Figure 3. Architecture of the proposed DCNNs model in this study 

In this study, the networks have 28,000 parameters and 5,841 neurons, and consist of five 

convolutional layers, one of which is followed by a max-pooling layer and three fully connected 

layers with a regression layer. BN is applied to the outputs of all convolutional and fully-

connected layers in the proposed DCNNs. Following BN, ReLU is used to introduce nonlinearity 

to the networks. The max-pooling layer is only applied to the output of ReLU at the first 

convolutional layer. The output of the last fully-connected layer is fed into a regression layer to 

predict the target output that is a continuous variable. 

As discussed in the previous subsection, the inputs to the DCNNs consisted of a sample matrix 

with fixed size 25×3×1 (i.e., the height, width, and number of channels of the sample matrix). 

Thus, the networks’ inputs consisted of 75 measurements (i.e., 𝐹1
1, 𝐹1

2, …, 𝐹25
3 ) that can be 

divided into three groups: 1) voltage 𝐅1 = {𝐹1
1, 𝐹2

1, … , 𝐹25
1 }, 2) current 𝐅2 = {𝐹1

2, 𝐹2
2, … , 𝐹25

2 }, and 

3) charge capacity 𝐅3 = {𝐹1
3, 𝐹2

3, … , 𝐹25
3 }. These measurements represented the entire dataset 

collected from a cell during a partial charge cycle. In the first convolution stage, the 

convolutional layer filtered the input samples with 16 kernels (also called filters) of size 1 × 2 ×
1 with a stride of size 1 × 1. The filter moved along the input sample matrix vertically and 
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horizontally, repeating the same computation for each region, that is, convolving the input. The 

step size with which the filter moved is called the stride. The samples, in turn, were fed into BN, 

ReLU, and the max-pooling layer of this stage. The second convolution stage received the 

outputs from the first convolution stage and fed it into the convolutional layer of this stage, and 

filtered it with 32 kernels of size 3 × 1 × 1. The third, fourth, and fifth convolution stages are 

connected sequentially by taking the responses from the ReLU of the previous stage as the inputs 

to the next stages. They all possessed 40 kernels of size 3 × 1 × 1 with a stride of size 1 × 1. 

The fully connected layers had 40 neurons, each of which connected to all neurons in the 

previous layer. After passing through a stack of convolution stages and fully connected stages, 

the input sample reached the destination, the regression layer, which outputted an estimated 

target corresponding to the input sample. 

Training Algorithm   

Like any other machine learning method, DCNNs contain a set of unknown parameters that need 

to be identified using a training dataset. To this end, a cost function J was defined to quantify the 

differences between the DCNNs’ predictions and the true outcomes of the training dataset. The 

stochastic gradient descent (SGD) method was utilized to minimize the expected generalization 

error given by the cost function. SGD is probably the most widely used optimization algorithm in 

deep learning, particularly when the training process is very slow due to a large number of 

available data. In this study, SGD with momentum, originally designed by B. T. Polyak (1964), 

was employed as the optimization algorithm to accelerate the learning process. SGD with 

momentum updated the parameters, 𝛉 (weights, 𝛚, and biases, b), to minimize the generalization 

error by taking small steps in the direction of the negative gradient of the cost function. In other 

words, SGD with momentum accumulated an exponentially decaying moving average of the past 

gradients and continued to move in their direction. The cost function 𝐽(𝛉) with the regularization 

term (also called weight decay) can be expressed as: 

𝐽𝑅(𝛉) = 𝐽(𝛉) + 𝜆Ω(𝛚) =
1

2𝑚
∑ (ℎ𝛉(𝐱(𝑖)) − 𝑧(𝑖))

2𝑚
𝑖=1 +

𝜆

2
𝛚𝑇𝛚  (2) 

where 𝐽𝑅(𝛉) is the cost function with the regularization term 𝜆Ω(𝛚), 𝜆 is the L2 regularization 

factor that weighs the relative contribution of the norm penalty term, Ω(𝛚), ℎ𝛉(𝐱) is the 

hypothesis function, 𝑚 is the number of training samples used at each iteration, 𝐱(𝑖) is the feature 

vector of the ith training sample, and 𝑧(𝑖) is the associated target value. The hypothesis function 

 ℎ𝛉(𝐱)  is defined as: 

ℎ𝛉(𝐱) = 𝑏0𝑥0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑛𝑥𝑛  (3) 

where n is the input dimension, and 𝑥𝑛 and 𝜔𝑛 denote the nth input variable and its parameter, 

respectively (𝑥0 = 1, and 𝑏0 is the bias value). Then, the parameter 𝛉 can be iteratively updated 

according to the following:  

�̂� =
1

2𝑞
∑ (ℎ𝜃(𝐱𝑗

(𝑖)
) − 𝑧𝑗

(𝑖)
)

2
𝑞
𝑖=1   (4) 
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𝛉𝑗+1 = 𝛉𝑗 − 𝛼�̂� + 𝛾(𝛉𝑗 − 𝛉𝑗−1) − 𝜆𝛼𝛉𝑗  (5) 

where �̂� is an estimator of the exact gradient by sampling a minibatch of 𝑞 samples, 𝐱𝑗
(𝑖)

 is the 

feature vector of the ith training sample among the minibatch at the jth iteration, and 𝑧𝑗
(𝑖)

 is the 

corresponding target value, 𝛼 is the initial learning rate (or step size), 𝛾 is the momentum that 

determines the contribution of gradients from the previous iteration to the current iteration, and 

𝛉𝑗 denotes the parameter estimate at the jth iteration.  

The weights in each layer were randomly initialized according to a Gaussian distribution with the 

mean of 0 and standard deviation of 0.01, while the values of biases of all convolutional and 

fully connected layers were initialized at 0.  
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MODULE 2: ENSEMBLE PROGNOSTICS 

As discussed in the Introduction section, robust RUL predictions can be achieved by forming an 

ensemble of multiple individual prognostic algorithms. This study deviated from the existing 

ensemble prognostics approach (Hu et al. 2012b) that identified degradation-independent 

weights for member algorithms. Instead, this study created a new ensemble approach that used 

degradation-dependent weights to combine multiple member algorithms in a weighted-sum 

formulation. This section presents the new ensemble learning-based prognostic approach. 

Although the new approach was developed in the context of general prognostics, it is expected 

that the methodology is readily applicable to RUL assessment of Li-ion batteries. 

A Generic Computational Framework 

A generic computational framework of the ensemble learning-based prognostic approach with 

degradation-dependent weights is illustrated in Figure 4.  

 

Figure 4. Flowchart of the proposed approach for ensemble prognostics 

A training dataset Y = [y1, y2, …, yN]T includes multi-dimensional measurement data from N 

different run-to-failure units, where yi (i = 1, 2, ..., N) denotes the measurement data from the ith 

training unit. The training dataset is used to train a predictive model. A test data set yt denotes 

the measurement data from an online testing unit. The testing dataset is used to validate the 

predictive model. A weight vector wst = [w1
st, w2

st,…, wM
st]T denotes the weights associated with 

the degradation stage st (st ∈ {1, 2, …, S}) of the testing unit, where M denotes the number of 

member algorithms. The ensemble prognostics approach first classifies the online testing unit, 

based on a sensed sample of the observable responses (or test dataset yt), into one of the 

predefined degradation stages, st, and then aggregates the prognostics results with degradation-

stage associated weights wst.  

RUL j

… …Prognostics 
algorithm 1

Prognostics
algorithm j

Prognostics 
algorithm M

RUL 1
… …

RUL M

Weighted-sum Predicted RUL

Testing data yt Training data Y

Locally 
weighted 
regression

Degradation 
stage st

Algorithm 
weights wst



 

11 

Formulation of Ensemble Prognostics with Degradation-Dependent Weights  

The predicted RULs of an online testing unit yt by M member algorithms were aggregated to 

generate the ensemble-predicted RUL for the testing unit using the following weighted-sum 

formulation (Hu et al. 2012b): 

 
1

ˆ ˆ  ,  t

M
s

j j t

j

L w L


 y Y  (6) 

where yt denotes the measurement data from the online testing unit, �̂� denotes the ensemble-

predicted RUL for yt, wj
st denotes the weight assigned to the jth prognostic algorithm associated 

with the degradation stage st, and �̂�𝑗(yt, Y) denotes the predicted RUL by the jth prognostic 

member algorithm trained with the data set Y. Let the weight vector wst = [w1
st, w2

st,…, wM
st]T 

and the vector of predicted RULs by member algorithms �̂� = [�̂�1, �̂�2, … , �̂�𝑀]
T
, the weighted-sum 

formulation in equation (6) can be expressed in a vector form as �̂�(𝐰𝑠𝑡 , �̂�) = (𝐰𝑠𝑡)T�̂�. 

Optimization of Degradation-Dependent Weights 

Achieving highly accurate and robust failure prognostics with the ensemble approach required 

assigning optimum weight values to the member algorithms for each of the S degradation stages. 

In the previous research (Hu et al. 2012b), an optimization-based weighting scheme was 

proposed to maximize the accuracy and robustness of an ensemble by synthesizing the prediction 

accuracy and diversity of its member algorithms. In this study, the optimization-based weighting 

scheme was used to optimize the degradation-dependent weight vectors. The weights for the sth 

degradation stage can be determined by solving the following optimization problem:  

   

1

ˆ ˆMinimize , , ,  

Subject to 1

s

s s s T s

i i i

M s

jj

S L L i

w





 



w

w L y I
 (7) 

where S() is a predefined evaluation metric that measures the accuracy of the ensemble-

predicted RUL, Li
T denotes the true RUL of the ith system unit, and Is is an index set that contains 

the indices of all training units whose degradation stages are s.  

Expectations were that the resulting ensemble with optimized degradation-dependent weights 

would optimally combine the generalization capabilities of the member algorithms and achieve 

robust RUL prediction. Given a pool of a large number of prognostic algorithms, solving the 

weight optimization problem in equation (7) would allow an optimal selection of prognostic 

algorithms from the pool to be used in the online testing phase. This is because larger weights 

associated with a degradation stage are likely to be assigned to algorithms that produce higher 

prognostic accuracy and diversity in the stage, while near-zero weights associated with the 
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degradation stages are likely to be assigned to algorithms that perform significantly more poorly 

than other algorithms in the stage.   
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CASE STUDY ON CAPACITY ESTIMATION 

The efficacy of the deep learning approach developed under Module 1 was verified based on 

experimental data from a 10-year-long continuous cycling test (i.e., repeated full 

charge/discharge cycles) on eight Li-ion prismatic cells (Hu et al. 2018) used in an implantable 

application. This section first introduces the extraction of partial charge data from the full charge 

data, then discusses the implementation of training and validation and test for DCNNs, and 

finally presents and discusses the capacity estimation results. 

Data Generation for Capacity Estimation 

It was noted that in practice a Li-ion battery cell often does not experience a complete discharge 

process before being installed on a battery charger. A user often wishes to charge the cell before 

it has been completely depleted. In this case, the cell starts to be charged from a partially 

discharged state with a certain amount of remaining capacity. In order to simulate this real life 

case where the cell starts to be charged at the partially discharged state and ends up being fully 

charged, the researchers generated a partial charge curve from a full charge curve by truncating 

the full charge curve below a pre-assigned initial charge voltage (𝑉initial) (Hu et al. 2015, Hu et 

al. 2018). The value of 𝑉initial was randomly drawn from a uniform distribution between a lower 

bound 𝑉low and an upper bound 𝑉high. This study considered two settings with different voltage 

ranges that corresponded to a low initial SOC and a high initial SOC to investigate how the 

initial SOC affected the accuracy of capacity estimation. Note that the high initial SOC setting 

indicated a cell undergoes a shallower discharge, as compared to the low initial SOC setting. 

Table 1 summarizes the voltage and SOC ranges for these two initial SOC settings. 

Table 1. The two initial SOC settings considered in generation of partial charge data 

Setting Setting name Voltage range SOC range 

Setting I Low initial SOC 
𝑉low = 3.65 V 

𝑉high = 3.80 V 
Roughly 3%–23% 

Setting II High initial SOC 
𝑉low = 3.80 V 

𝑉high = 3.85 V 
Roughly 23%–43% 

 

In addition to the effect of the initial SOC, the effect of current measurement error was also 

investigated in this study. This investigation considered two scenarios: Scenario I — No bias in 

current measurement and Scenario II — 2% positive bias in current measurement. In Scenario I, 

no change was made to the current and charge capacity measurements, whereas in Scenario II, 

the current-related features, the current and charge capacity, were artificially increased by 2% to 

simulate a 2% positive bias in the current measurement. The two scenarios were employed to 

study the influence of current measurement error on the accuracy of capacity estimation. Based 

on these two scenarios and the two voltage settings, a total of 4 different cases were considered 

in this study and are listed as follows: 
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 Case 1 — Low initial SOC (3%–23%), no bias in current measurement 

 Case 2 — Low initial SOC (3%–23%), 2% positive bias in current measurement 

 Case 3 — High initial SOC (23%–43%), no bias in current measurement 

 Case 4 — High initial SOC (23%–43%), 2% positive bias in current measurement 

Implementation of Training for DCNNs 

The objective of the proposed deep learning method was to reduce the expected generalization 

error given by equation (2). In order to meet this objective, the researchers trained this DCNNs 

model using SGDM with a minibatch of 128 examples and their associated targets. An initial 

learning rate of 0.01 was set for all layers and this rate decreased by a factor of 5 for every 7 

training epochs. The values of several important parameters used in training the DCNNs model 

appear in Table 2. 

Table 2. List of parameter values used in training 

Parameter Value 

Initial learning rate, α 0.01 

Minibatch size 128 

Momentum, 


 0.9 

L2 Regularization,   0.0001 

Number of epochs 35 

 

During the training process, the training and validation datasets were shuffled for each epoch to 

achieve a relatively unbiased estimator of the true gradient of the cost function and to give all 

samples an equal chance to be used. Specifically, the minibatch with 128 samples in one epoch, 

used for updating the parameters 𝛉 (weights and biases) and computing the validation root mean 

square error (RMSE), is different from that in another epoch. For several reasons, including the 

randomness in the data shuffling and parameter initialization, two runs with the same training 

and validation datasets may give rise to two different local minima in the cost function. 

However, this is rarely a real concern and the usual course is to settle for finding a point in the 

parameter space that has a low cost but not the minimal cost (Saxe et al. 2013, Dauphin et al. 

2014, Dauphin et al. 2015).  

In this study, computations were carried out on a processor Intel Core i7-8700 CPU 3.2 GHz and 

64 RAM, and an NVIDIA TITAN XP graphics processing unit (GPU) with 12 GB of GDDR5X 

memory. With the support from the advanced CPU and GPU, the network took between 5 and 7 

minutes to train.  

Implementation of Validation and Test for DCNNs 

The conventional data splitting strategy is to first shuffle the entire dataset and then split it into 

training, validation, and test subsets to ensure that samples are selected randomly for training, 
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validation, and test. This is because many datasets are naturally arranged in some forms where 

successive samples are more likely correlated with their neighbors than those arranged farther 

away. The dataset in this study consisted of cycling test data from eight cells, arranged in 

descending order of the charge/discharge cycle number within a cell, and in ascending order of 

the cell number (i.e., cell 1 to cell 8). If samples in a minibatch were drawn following the order 

of this dataset, the minibatch would likely consist of samples from one specific cell and thus be 

biased toward the cell. In such a case, while the order of the dataset holds some physical 

significance, it is necessary to shuffle the dataset before splitting it for training and validation 

(Dauphin et al. 2015).  

For the task of online capacity estimation, it was of practical significance for a trained DCNNs 

model to be capable of accurately estimating the capacity of one specific cell from the beginning 

to the end of life. In other words, the test dataset should contain complete data from one or 

multiple cells rather than partial data from the cell(s) used for the test. Consequently, the 

traditional splitting strategy needed to be adjusted for the specific task considered in this study. 

To this end, instead of shuffling the entire dataset, the researchers first took the data from one 

cell out of the entire dataset, to be used as the test set, and then shuffled the remaining data from 

the other seven cells to create the training (70%) and validation (30%) sets. The performance of 

the proposed method was evaluated using a test dataset that consisted of the complete data from 

one cell and was separated from the data used for training and validation.  

Although the data splitting strategy adopted in this study differed from those usually used by 

researchers in the deep learning community, it allowed for evaluation of the performance of a 

trained deep learning model against a complete set of measurement data from the beginning to 

the end of life for any battery cell. 

Definition of Error Measures 

The accuracy of a trained DCNNs model was evaluated by using the eight-fold cross validation, 

as shown in Figure 5.  
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Shen et al. 2018. Copyright © 2018 ASME. All rights reserved. Reprinted with permission. 

Figure 5. Procedure of eight-fold cross validation 

The completed dataset was first split into eight mutually exclusive subsets or folds, cell 1, cell 2, 

…, cell 8, corresponding to the eight experimental cells. Subsequently, eight trials of training and 

validation and test were performed such that within each trial a fold of the data was held out for 

test, while the remaining seven folds were pulled together, randomly shuffled, and divided into a 

training dataset (70% of all samples in the seven folds) and a validation dataset (30%).  

In the 𝑘th cross validation trial, the trained DCNNs model was used to estimate the capacities of 

the samples in the test dataset (i.e., the complete data from the 𝑘th cell). After performing all the 

eight cross validation trials, the overall test error εRMS
All  by DCNNs was then estimated by taking 

the average of the individual test errors εRMS
k  across the eight trials. 

𝜀RMS
𝑘 = √

1

𝑁𝑘
∑ (𝑦𝑘(𝐱𝑖

𝑘) − �̂�𝑘(𝐱𝑖
𝑘))2𝑁𝑘

𝑖=1  (8) 

𝜀RMS
All = √

1

∑ 𝑁𝑘
8
𝑘=1

∑ ∑ (𝑦𝑘(𝐱𝑖
𝑘) − �̂�𝑘(𝐱𝑖

𝑘))2𝑁𝑘
𝑖=1

8
𝑘=1  (9) 

where Nk indicates the number of samples used for the test in the kth cross validation trial, 𝐱𝑖
𝑘 is 

the input feature vector of the ith sample in the kth trial, and 𝑦𝑘(𝐱𝑖
𝑘) and �̂�𝑘(𝐱𝑖

𝑘) are the measured 

(or true) and estimated capacities for the ith sample in the kth trial, respectively. 

Capacity Estimation Results 

In order to estimate the accuracy of the proposed methodology for capacity estimation, a 

traditional machine learning method, relevance vector machine (RVM) (Hu et al. 2015, Hu et al. 

2018), was also employed for the four cases explained earlier. Tables 3 through 6 show the 

Validation data

Trial 1

Trial 2

Trial 8

Complete dataset: cells 1–8

… …

Training data Test data

cell 170% 30%

1 2 3 4 5 6 7 8

cell 270% 30%

cell 870% 30%
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comparison results between RVM and DCNNs in terms of both the RMSE and maximum error 

(ME).  

Table 3. Capacity estimation results by RVM and DCNNs for Case 1 

Model Item #1 #2 #3 #4 #5 #6 #7 #8 Overall 

RVM 
RMSE 0.3379 0.3545 0.5230 0.4419 0.4691 0.4025 0.4203 0.3988 0.4185 

ME 4.5305 2.1429 3.0123 2.6030 2.9161 2.4677 2.4883 2.8807 4.5305 

DCNNs 
RMSE 0.3022 0.2980 0.3089 0.3677 0.4098 0.3117 0.2770 0.2619 0.3171 

ME 2.4910 2.6828 3.3294 3.5241 2.2963 2.5342 2.8852 2.0273 3.5241 

 

Table 4. Capacity estimation results by RVM and DCNNs for Case 2 

Model Item #1 #2 #3 #4 #5 #6 #7 #8 Overall 

RVM 
RMSE 0.3606 0.4411 0.3843 0.5339 0.5062 0.3636 0.3816 0.3706 0.4177 

ME 4.0473 3.2248 2.9912 3.0050 3.2329 3.4885 2.6736 2.9266 4.0473 

DCNNs 
RMSE 0.3583 0.2599 0.3217 0.4451 0.3923 0.3374 0.2787 0.2714 0.3331 

ME 2.8154 2.3472 4.4404 4.9244 2.1295 2.8925 4.2610 2.0590 4.9244 

 

Table 5. Capacity estimation results by RVM and DCNNs for Case 3 

Model Item #1 #2 #3 #4 #5 #6 #7 #8 Overall 

RVM 
RMSE 0.4734 0.4924 0.5742 0.5582 0.8408 0.5601 0.7613 0.6037 0.6080 

ME 5.4080 2.0123 6.2421 6.2263 5.6261 7.6505 3.6241 2.2397 7.6505 

DCNNs 
RMSE 0.3396 0.3604 0.3384 0.4700 0.3922 0.2776 0.3228 0.3076 0.3511 

ME 4.3461 2.8369 6.2855 6.4279 4.5568 5.8600 2.6983 2.1923 6.4279 

 

Table 6. Capacity estimation results by RVM and DCNNs for Case 4 

Model Item #1 #2 #3 #4 #5 #6 #7 #8 Overall 

RVM 
RMSE 0.4189 0.5540 0.5691 0.6474 0.8813 0.6394 0.6619 0.6007 0.6216 

ME 5.0855 2.1475 6.1685 6.0097 3.5672 8.6117 3.3122 2.5260 8.6117 

DCNNs 
RMSE 0.3408 0.3710 0.3937 0.4204 0.4919 0.2876 0.2704 0.4252 0.3752 

ME 4.6058 2.7902 5.9427 6.5492 4.7832 4.1072 3.7108 2.4969 6.5492 

 

It should be noted that the capacity estimation of DCNNs was based on the best hypotheses of 

the proposed model (i.e., the best model with the lowest validation error among 150 runs). 

Three significant observations were made from these results and are listed as follows: 

 First, based on the overall RMSEs and Max errors from all eight cells, the performance of 

DCNNs was evidently better than that of RVM regardless of the SOC and current bias 

conditions. From the perspective of RMSEs and Max errors of individual cells, the results 
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suggested that DCNNs were capable of making a more accurate capacity estimation than 

RVM for all test cells. Although there were several situations where the Max error of RVM 

was slightly lower than the corresponding Max error of DCNNs, the overall performance of 

DCNNs was clearly better than RVM in all four cases. Furthermore, the team observed that 

both DCNNs and RVM were able to adapt the regression model to changes in the input 

vectors for all four cases, and the performance improvement of DCNNs over RVM was more 

significant in the high SOC than the low SOC.  

 Second, introducing the 2% positive bias in current measurement did not significantly 

influence the accuracy of DCNNs (compare Case 1 versus Case 2 and Case 3 versus Case 4).  

 Third, the RMSE by the proposed method did not show large increases when the initial SOC 

range was elevated (10.7% increase from Case 1 to Case 3 and 12.6% increase from Case 2 

to Case 4). However, much larger increases were observed in the RMSE by RVM (45.3% 

increase from Case 1 to Case 3 and 48.8% increase from Case 2 to Case 4). Therefore, it can 

be concluded that neither deep (low initial SOC 3%–23%) nor shallow (high initial SOC 

23%–43%) discharge conditions affected the capacity of the DCNNs to make an accurate 

capacity estimation.  

In summary, the verification results based on 10 years of cycling data suggested that the DCNNs 

model was able to achieve a more accurate capacity estimation than RVM regardless of the 

initial charge level and the current measurement noise level. Indeed, DCNNs were more 

effective than RVM, because they possessed a higher generalization ability and were able to 

leverage a larger body of information. 

Effect of Number of Layers 

A convolutional neural network can consist of one or multiple convolutional layers. The optimal 

number of convolutional layers depends on the amount and complexity of the data. A parametric 

study was implemented to empirically investigate the effect of the number of convolutional 

layers on the accuracy of the DCNNs. For each cross validation trial of Cases 1 and 3, the team 

conducted 150 independent optimization runs with the number of convolutional layers varied 

from 0 to 6. Two box plots of the overall RMSE versus the number of convolutional layers were 

produced to graphically summarize the simulation results and are shown in Figure 6.  
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Case 1 Case 3 

Shen et al. 2018. Copyright © 2018 ASME. All rights reserved. Reprinted with permission. 

Figure 6. Overall RMSE on different numbers of convolutional layers for Case 1 and 

Case 3 

Note that the overall RMSEs were based on the best 30 results out of the 150 runs. In DCNNs, a 

large number of convolutional layers may lead to a very small size of outputs at the last layer. In 

order to prevent the output size of the last convolutional layer from becoming too small, the 

maximum number of convolutional layers attempted in this study was 6. 

Three observations can be made from the plots:  

 Deep neural networks (i.e., DCNNs with 4 or more convolutional layers) significantly 

improve the accuracy in capacity estimation over the conventional neural networks (0 

convolutional layers)  

 Although each convolutional layer in a DCNNs model contains less than 1 percent of the 

networks’ parameters, the number of convolutional layers plays a significant role in the 

estimation accuracy  

 An inappropriate selection of the number of convolutional layers may lead to low estimation 

accuracy  

The DCNNs model with five convolutional layers produced a slightly lower error when 

compared with the model with any other number of layers. Thus, the final DCNNs model was 

chosen to contain five convolutional layers and this network depth seemed to ensure satisfactory 

performance of the proposed method. The earlier results dealt (Tables 3 through 6) were derived 

using this chosen value of 5. 
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PROJECT RESULTS AND ACCOMPLISHMENTS 

Results and Conclusions 

An intelligent prognostics platform was developed for on-board SOH estimation and RUL 

prediction of Li-ion batteries. The uniqueness of the platform lies in its capabilities to 

automatically learn features of fade from large volumes of voltage and current measurement data 

during partial charge cycles (Module 1) and to synthesize the generalization strengths of multiple 

prognostic algorithms to ensure high prediction accuracy for an expanded range of battery 

applications and their operating conditions (Module 2). 

To the knowledge of the principal investigator (PI), the research conducted under Module 1 

represented the first attempt to apply deep learning to on-board SOH assessment of Li-ion 

batteries. The performance of the proposed deep learning approach was verified using 10 years 

of continuous cycling data acquired from implantable-grade Li-ion battery cells. The verification 

demonstrated that the proposed approaches achieved satisfactory accuracy in capacity estimation 

and outperformed a traditional machine learning-based approach, suggesting that the approach is 

a promising tool for online health management of Li-ion batteries. 

Opportunity for Training and Development 

The opportunities for training and development resulting from this project were as follows: 

 The PI incorporated the research findings on failure prognostics as part of regular lectures 

within a new Iowa State University graduate-level course, ME 591X: Probabilistic 

Engineering Analysis and Design. 

 The PI has shared the results of this research at invited seminars at Medtronic and Iowa State 

University. 

 Three undergraduate students, Ha Lim Jeong (senior in mechanical engineering [ME]), Cole 

Tenold (senior in ME), and Stetsen Greiner (first year honors in ME), used this research 

project to gain research experience on the reliability and safety of Li-ion batteries. This 

project also enabled the PI and collaborators to provide research training for three graduate 

students: Yifei Li (MS in ME), Charlie Hubbard (MS in electrical and computer 

engineering), and Sheng Shen (PhD in ME). 

Dissemination of Results 

The results from this project have been disseminated through oral presentations by the PI and the 

students at three international conferences: the American Society of Mechanical Engineers 

(ASME) Design Automation Conference, Innovations in Biomedical Materials sponsored by the 

American Ceramic Society, and the Annual Conference of the Prognostics and Health 
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Management (PHM) Society. The PI helped organize the former two conferences by serving as 

symposium co-chair/track chair.  

The researchers have made efforts to disseminate research results through collaborations with 

industry. Specifically, the researchers have been closely working with a leading medical device 

company, Medtronic, in the area of battery prognostics. Holding seminars and seeking internship 

positions for graduate students are two options to further this collaboration. 

Products 

The journal/conference papers and conference presentations that were partially supported by this 

project are listed as follows: 

Hu, C., M. Hong, Y. Li, and H. Jeong. 2016. On-Board Analysis of Degradation Mechanisms of 

Lithium-Ion Battery using Differential Voltage Analysis. Paper presented at the 

Innovations in Biomedical Materials Conference, July 29–31, Chicago, IL. 

——. 2016. On-Board Analysis of Degradation Mechanisms of Lithium-Ion Battery using 

Differential Voltage Analysis. Paper presented at the ASME International Design 

Engineering Technical Conferences and Computers and Information in Engineering 

Conference, August 21–24, Charlotte, NC. 

Hubbard, C., J. Bavslik, C. Hegde, and C. Hu. 2016. Data-Driven Prognostics of Li-Ion 

Rechargeable Battery using Bilinear Kernel Regression.  Paper presented at the Annual 

Conference of the Prognostics and Health Management (PHM) Society, October 3–6, 

Denver, CO. 

Li, Z., D. Wu, C. Hu, and J. Terpenny. 2019. An Ensemble Learning-Based Prognostic Approach 

with Degradation-Dependent Weights for Remaining Useful Life Prediction. Reliability 

Engineering and System Safety, Vol. 184, pp. 110–122. 

https://www.sciencedirect.com/science/article/pii/S0951832017308104. 

——. 2017. An Ensemble Learning-based Prognostic Approach with Degradation-Dependent 

Weights for Remaining Useful Life Prediction. Reliability Engineering and System 

Safety, In Press. 

Li, Y., M. K. Sadoughi, Z. Li., and C. Hu. 2017. An Ensemble Bias-Correction Method with 

Adaptive Weights for Dynamic Modeling of Lithium-Ion Batteries. Paper presented at 

the ASME International Design Engineering Technical Conferences and Computers and 

Information in Engineering Conference, August 6–9, Cleveland, OH. 

Li, Z., D. Wu, C. Hu, J. Terpenny, and S. Shen. 2017. An Ensemble Learning-based Prognostic 

Approach with Degradation-Dependent Weights for Remaining Useful Life Prediction. 

Paper presented at the ASME International Design Engineering Technical Conferences 

and Computers and Information in Engineering Conference, August 6–9, Cleveland, OH. 

Shen, S., M. K. Sadoughi, X. Chen, M. Hong, and C. Hu. 2018. Online Estimation of Lithium-

Ion Battery Capacity Using Deep Convolutional Neural Networks. ASME International 

Design Engineering Technical Conferences and Computers and Information in 

Engineering Conference (IDETC/CIE), Paper Number: DETC2018-86347, August 26–29 

2018, Quebec City, Quebec, Canada. 

http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2713204. 

https://www.sciencedirect.com/science/article/pii/S0951832017308104
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2713204
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Study Impacts 

This research pioneers a novel intelligent prognostics platform that has the potential to enable the 

predictive control/maintenance of Li-ion batteries in transportation applications. Employing a 

novel deep learning approach will provide a new way for BMS designers to build predictive 

models for on-board capacity estimation that are more accurate and easier to design than existing 

machine learning models. The approaches and tools in the intelligent prognostics platform will 

provide greater transparency into the current and future health of an operating battery cell, more 

cost-effective maintenance/control (M/C) strategies and improved safety, and opportunities for 

life extensions. The platform, if successfully implemented in BMS, will potentially lead to the 

development of a cost-effective, and highly reliable and safe energy storage solution to 

transportation electrification.  
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